;鑄件在凝固過程中又不斷地釋放出結晶潛
熱,其斷面上存在著已凝固完畢的固態(tài)外殼、液固態(tài)并存的凝固區(qū)域和液態(tài)區(qū),在金屬型中
凝固時還可能出現(xiàn)中間層。因此,鑄件與鑄型的傳熱是通過若干個區(qū)域進行的,此外,鑄型
和鑄件的熱物理參數(shù)還都隨溫度而變化,不是固定的數(shù)值等。將這些因素都慮進去,建立
一個符合實際情況的微分方程式是很困難的。因此,用數(shù)學分析法研究鑄件的凝固過程時,
必須對過程進行合理的簡化。
在鑄件和鑄型的不穩(wěn)定導熱過程中,溫度與時間和空間的關系可用傅里葉導熱微分方程
描述:
② 晶體缺陷模型 bao括微晶模型、空穴模型、位錯模
或綜合模型等,假設液態(tài)金屬同樣存在與固相類似的晶
缺陷,能定性地解釋過熱度不大的液態(tài)金屬結構特征
接受。該模型認為,液態(tài)金屬中存在 “能量起伏”和 “結
處于熱運動的原子能量有高有低,同一原子的能量也隨時
間不停變化,時高時低,這種現(xiàn)象稱之為 “能量起伏”。另一方面,液態(tài)金屬中存在由大量
不停 “游動”著的原子集團組成,集團內為某種有序結構,處于集團外的原子則處于散亂的
無序狀態(tài);并且這些原子集團不斷的分化組合,時而長大,時而減小,時而產生,時而消失。
對于結晶溫度范圍較寬的合金,散失一部分
(約20%)潛熱后,晶粒就連成網絡而阻塞流動,
大部分結晶潛熱的作用不能發(fā)揮,所以對流動性影
響不大。但是,也有例外的情況,當初生晶為非金
屬,或者合金能在液相線溫度以下以液固混合狀
態(tài),在不大的壓力下流動時,結晶潛熱則可能是個
重要的因素。例如,在相同的過熱度下AlSi合金的流動性,在共晶成分處并非大值,而
在過共晶區(qū)里繼續(xù)增加 (圖121),就是因為初生硅相是比較規(guī)整的塊狀晶體,且具有較小
的機械強度,不形成堅強的網絡,能夠以液固混合狀態(tài)在液相線溫度以下流動。