表明液體的原子間距接近固體,在熔點附近其系統(tǒng)的混亂度只是稍大于
固體而遠小于氣體的混亂度。表12為一些金屬的熔化潛熱和汽化潛熱。如果說汽化潛熱
(固→氣)是使原子間的結(jié)合鍵全部破壞所需的能量,則熔化潛熱只有汽化潛熱的3%~7%,
即固→液時,原子的結(jié)合鍵只破壞了百分之幾。因此,可以認為液態(tài)和固態(tài)的結(jié)構(gòu)是相似
的,金屬的熔化并不是原子間結(jié)合鍵的全部破壞,液體金屬內(nèi)原子仍然具有一定的規(guī)律性,
特別是在金屬過熱度不太高 (一般高于熔點100~300℃)的條件下更是如此。需要指出的
是,在接近汽化點時,液體與氣體的結(jié)構(gòu)往往難以分辨,說明此時液體的結(jié)構(gòu)更接近于
氣體。
3黏度對液態(tài)形成過程的影響
(1)對液態(tài)金屬流態(tài)的影響 流體的流態(tài)決定于雷諾
數(shù)Re。據(jù)流體力學(xué),臨界雷諾數(shù)Re臨等于2300,Re>2300
為紊流,
從以上二式得知,f層 ∝η,而f紊 ∝η0.2
??梢姡簯B(tài)金屬的流動阻力在層流時受黏度的
影響遠比在紊流時的大。液態(tài)金屬的動力黏度一般都大于水的動力黏度,但它們的運動黏度
和水的接近。所以,一般澆注情況下,液態(tài)金屬在澆注系統(tǒng)和型腔中的流動皆為紊流。在型
腔的細薄部分,或在充型的后期,由于流速顯著下降,才呈層流流動。
實際金屬比上述現(xiàn)象復(fù)雜得多,因為工業(yè)應(yīng)用的金屬主要是合金,而且是多元合金;原9
材料中存在多種多樣的雜質(zhì),有些雜質(zhì)的化學(xué)分析值雖然不高,甚至低于10-4數(shù)量級,但
其原子數(shù)仍是驚人的;在熔化過程中,金屬與爐氣、熔劑、爐襯的相互作用還會吸收氣體帶
進雜質(zhì),甚至帶入許多固、液體質(zhì)點。因此,實際金屬的液態(tài)結(jié)構(gòu)是非常復(fù)雜的。它也存在
著游動原子集團、空穴以及能量起伏,在原子集團和空穴中溶有各種各樣的合金元素及雜質(zhì)
元素,由于化學(xué)鍵力和原子間結(jié)合力的不同,還存在著濃度起伏以至成分和結(jié)構(gòu)不同的游動
原子集團。